Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int. j. cardiovasc. sci. (Impr.) ; 35(5): 646-656, Sept.-Oct. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405187

ABSTRACT

Abstract Background Exercise training (ET) is an adjunctive treatment for obstructive sleep apnea (OSA) and its consequences. However, the effects of exercise on heart remodeling are unknown in the population with OSA. Objective We investigated the effect of ET on markers of diastolic function, sleep parameters, and functional capacity in patients with OSA. Methods Sedentary patients with OSA (apnea-hypopnea index, AHI ≥15 events/hr) were randomly assigned to untrained (n=18) and trained (n=20) strategies. Polysomnography, cardiopulmonary exercise test, and echocardiography were evaluated at the beginning and end of the study. ET consisted of 3 weekly sessions of aerobic exercise, resistance exercises, and flexibility training (72 sessions, completed in 11.65±0.86 months). A two-way analysis of variance (ANOVA) was used, followed by Tukey's post-hoc test. The level of statistical significance was set at p<0.05 for all analyses. Result Thirty-eight patients were included (AHI:45±29 events/hr, age:52±7 y, body mass index: 30±4 kg/m2). They had similar baseline parameters. ET caused a significant change in OSA severity (AHI:4.5±18 versus -5.7±13 events/hr; arousal index:1.5±8 versus -6.1±13 events/hr, in untrained and trained groups respectively, p<0.05). The trained patients had an increase in functional capacity after intervention. ET improved isovolumetric relaxation time (IVRT, untrained=6.5±17.3 versus trained=-5.1±17.1 msec, p<0.05). There was a significant correlation between changes in IVRT and arousal index in the trained group (r =-0.54, p<0.05). No difference occurred in the other diastolic function parameters evaluated. Conclusion ET promotes modest but significant improvement in AHI, functional capacity, and cardiac IVRT, a validated parameter of diastolic function.

2.
Clinics ; 77: 100003, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364742

ABSTRACT

Abstract Objectives Refractory angina (RA) is a chronic condition clinically characterized by low effort tolerance; therefore, physical stress testing is not usually requested for these patients. Cardiopulmonary exercise testing (CPET) is considered a gold standard examination for functional capacity evaluation, even in submaximal tests, and it has gained great prominence in detecting ischemia. The authors aimed to determine cardiorespiratory capacity by using the oxygen consumption efficiency slope (OUES) in patients with refractory angina. The authors also studied the O2 pulse response by CPET and the association of ischemic changes with contractile modifications by exercise stress echocardiography (ESE). Methods Thirty-one patients of both sexes, aged 45 to 75 years, with symptomatic (Canadian Cardiovascular Society class II to IV) angina who underwent CPET on a treadmill and exercise stress echocardiography on a lower limb cycle ergometer were studied. ClinicalTrials.gov: NCT03218891. Results The patients had low cardiorespiratory capacity (OUES of 1.74 ± 0.4 L/min; 63.9±14.7% of predicted), and 77% of patients had a flattening or drop in O2 pulse response. There was a direct association between Heart Rate (HR) at the onset of myocardial ischemia detected by ESE and HR at the onset of flattening or drop in oxygen pulse response detected by CPET (R = 0.48; p = 0.019). Conclusion Patients with refractory angina demonstrate low cardiorespiratory capacity. CPET shows good sensitivity for detecting abnormal cardiovascular response in these patients with a significant relationship between flattening O2 pulse response during CEPT and contractile alterations detected by exercise stress echocardiography. Highlights OUES analysis is useful for assessing functional capacity in refractory angina. O2 pulse curve is correlated with contractile alterations in exercise echocardiogram. Cardiopulmonary exercise test is useful toll in patients with refractory angina.

3.
Clinics ; 73: e226, 2018. tab
Article in English | LILACS | ID: biblio-890749

ABSTRACT

OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, we evaluate pulse wave velocity to ascertain the arterial stiffness of large vessels. METHODS: Fourteen male anabolic androgenic steroid users and 12 nonusers were studied. Heart rate, blood pressure, and respiratory rate were recorded. Baroreflex sensitivity was estimated by the sequence method, and cardiac autonomic control by analysis of the R-R interval. Pulse wave velocity was measured using a noninvasive automatic device. RESULTS: Mean spontaneous baroreflex sensitivity, baroreflex sensitivity to activation of the baroreceptors, and baroreflex sensitivity to deactivation of the baroreceptors were significantly lower in users than in nonusers. In the spectral analysis of heart rate variability, high frequency activity was lower, while low frequency activity was higher in users than in nonusers. Moreover, the sympathovagal balance was higher in users. Users showed higher pulse wave velocity than nonusers showing arterial stiffness of large vessels. Single linear regression analysis showed significant correlations between mean blood pressure and baroreflex sensitivity and pulse wave velocity. CONCLUSIONS: Our results provide evidence for lower baroreflex sensitivity and sympathovagal imbalance in anabolic androgenic steroid users. Moreover, anabolic androgenic steroid users showed arterial stiffness. Together, these alterations might be the mechanisms triggering the increased blood pressure in this population.


Subject(s)
Humans , Male , Adult , Autonomic Nervous System/drug effects , Vagus Nerve/drug effects , Cardiovascular System/drug effects , Baroreflex/drug effects , Anabolic Agents/adverse effects , Androgens/adverse effects , Autonomic Nervous System/physiology , Blood Pressure/drug effects , Cardiovascular Physiological Phenomena/drug effects , Cross-Sectional Studies , Risk Factors , Baroreflex/physiology , Vascular Stiffness/drug effects , Pulse Wave Analysis
4.
Clinics ; 66(1): 151-157, 2011. ilus, tab
Article in English | LILACS | ID: lil-578612

ABSTRACT

OBJECTIVES: To investigate the effect of opioid receptor blockade on the myocardial protection conferred by chronic exercise and to compare exercise training with different strategies of myocardial protection (opioid infusion and brief periods of ischemia-reperfusion) preceding irreversible left anterior descending coronary ligation. INTRODUCTION: The acute cardioprotective effects of exercise training are at least partly mediated through opioid receptor-dependent mechanisms in ischemia-reperfusion models. METHODS: Male Wistar rats (n = 76) were randomly assigned to 7 groups: (1) control; (2) exercise training; (3) morphine; (4) intermittent ischemia-reperfusion (three alternating periods of left anterior descending coronary occlusion and reperfusion); (5) exercise training+morphine; (6) naloxone (a non-selective opioid receptor blocker) plus morphine; (7) naloxone before each exercise-training session. Myocardial infarction was established in all groups by left anterior descending coronary ligation. Exercise training was performed on a treadmill for 60 minutes, 5 times/week, for 12 weeks, at 60 percent peak oxygen (peak VO2). Infarct size was histologically evaluated. RESULTS: Exercise training significantly increased exercise capacity and ΔVO2 (VO2 peak - VO2 rest) (p<0.01 vs. sedentary groups). Compared with control, all treatment groups except morphine plus naloxone and exercise training plus naloxone showed a smaller infarcted area (p<0.05). No additional decrease in infarct size occurred in the exercise training plus morphine group. No difference in myocardial capillary density (p = 0.88) was observed in any group. CONCLUSIONS: Exercise training, morphine, exercise training plus morphine and ischemia-reperfusion groups had a smaller infarcted area than the control group. The effect of chronic exercise training in decreasing infarct size seems to occur, at least in part, through the opioid receptor stimulus and not by increasing ...


Subject(s)
Animals , Male , Rats , Myocardial Infarction/prevention & control , Physical Conditioning, Animal/physiology , Receptors, Opioid/antagonists & inhibitors , Case-Control Studies , Cardiotonic Agents/pharmacology , Morphine/pharmacology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/prevention & control , Narcotics/pharmacology , Oxygen Consumption/physiology , Physical Exertion/physiology , Random Allocation , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL